Tailoring surface properties for advanced biomaterials devices and application

Mariano Anderle Innovation, Research and ICT Department Autonomous Province of Trento, Italy

web: www.marianoanderle.it e-mail: mariano.anderle@provincia.tn.it

Outline

Motivation õÈ•ĭ¦andeit&s∧[|∧õ **Application** õÈå^}ãqaþ|| æ} c.æcã[}õ õÈàæ&æ⁄å ¦@ðaæã[}õ õÈå¦å`^*|ãç.^¦^õ õÈ{ã&¦ [chitpsǎnãåå^ãç&ã&^ õ õÈÖÞlað Áon-& @ã.]õ

Conclusion

Motivation

- "Surface chemical modification and immobilisation processes
- "Implantable materials/devices
- ["] Drug delivery systems
- "Biochips/biosensors
- Micro-fluidics

Materials utilised for medical devices selected on the basis of mechanical and physical properties

Development of biological functional material stimulating bioactivity and biorecognition

Surface modification processes of materials allow the combination of ideal bulk properties e.g. *tensile strength or stiffness for implants, electronic or optical properties for sensors,* with desired surface properties: e.g. *biocompatibility or selectivity to a particular biomolecule* Goal

is to exercise a control over the way in which the body or individual biomolecules respond to the material surface

"Non covalent surfaces are effective for many applications; however, passive adsorption fails in many cases.

Covalent immobilization is often necessary for binding of molecules that do not adsorb, adsorb very weakly, or adsorb with improper orientation and conformation to noncovalent surfaces.

"Covalent immobilization may result in better biomolecule activity, reduced nonspecific adsorption, and greater stability.

Surface modification processes

Surfaces can be modified physico-chemically by:

" coating

" modifying existing surface

Surfaces can be modified biologically by: *"* grafting bioactive molecules to surface (i.e. lipids, proteins)

From B.D.Ratner et al., 1997, Surface Modification of Polymeric Biomaterials, Plenum Press

surface functionalisation and surface analysis

High surface sensitive techniques are needed to study the physics and chemistry of materials surfaces

Method
XPS, SIMS, FTIR, ml
SEM, AFM, SNOM
AFM
Contact angle

Titanium Dental Implants

Molaire Maxilaire Inférieur 430 mm² Gén. I 10 x 4.0 mm 206 mm² Gén.II 9 x 4.1 mm 690 mm²

Resistance to transverse force compone

Shorter to avoide neurological problems

Deporter, D.A., Todescan, R. et al.

Length (mm)	# Used	# Failure	% Failure
7	44	1	2.3
9	89	4	4,5
12	16	2	12,5

Overall 5 year failure rate = 4,6%

A Biological Functionalization to Stimulate the Soft Tissue Adhesion

- Titanium alloy surface coating using a plasma assisted chemical vapor deposition process (PACVD) to reduce ion release from titanium and provide an amine-containing layer with adequate stability;
- PEG molecules immobilization creating a protein-resistant (non-fouling) surface;
- Cell adhesive, RGD-containing peptides immobilization stimulating the formation of the biological seal between the soft tissue and the implant.

ECM proteins and integrin receptors

RGD Adhesion Peptide

Titanium alloy functionalization: Overview

Step 1: amide bond through the N-hydroxysuccinimide ester (NHS)Step 2: thiol chemistry (Vinylsulfone)

Fluorescent derivative PEG: 5.5 · 10¹³ molecules/cm²

Titanium alloy functionalization: XPS analysis

Titanium alloy functionalization: Human gingival cells (HGF-1) adhesion

titanium alloy

Cell images obtained with a laser scan microscope (a and b) and with a scanning electron microscope (a1 and b1)

RGD modified titanium alloy

17.500 cell/cm² Incubation 24 h in serum free medium plus cycloheximide (25 ug/ml)

Biomaterials

VGUV"QP"ÖENKPKECN"IT POLYMERS

- Š Uncontrolled presence of contaminants and additives
- **Š** Surface roughness

Biomaterials

TOF-SIMS: Static Sims

PMMA: Tof Positive Ion Spectra

PMMA Positive spectra analysis

14/05/2009

PMMA Positive spectra analysis

14/05/2009

26

PCA application to PMMA samples treated with different cleaning processes

14/05/2009

Biomaterials

XPS (X-ray Photoelectron Spectroscopy)

XPS (X-ray Photoelectron Spectroscopy)

Biomaterials: Polymers

PVC

Staphylococcus epidermidis on PMMA 2000X

> Staphylococcus epidermidis on PP 2000X

Staphylococcus epidermidis on PVDF 2000X

> Staphylococcus epidermidis on PVDF 4000X

Roughness

Biomaterials: Polymers

PVC (mainly acid)

$$-\left(\begin{array}{c} CH_2 - CH \\ - \\ Cl \end{array} \right)_n$$

PMMA (mainly basic)

LDPE (dispersive)

$$(CH_2 - CH_2)_n$$

XPS Analysis	Nominal	Experimental
PVC	C = 66.7%	C = 66.3%
	Cl = 33.3%	Cl = 33.2%
		O = 0.5%
LDPE	C = 100%	C = 100%
PMMA	C = 71.4%	C = 72%
	O = 28.6%	O = 28%

XPS (X-ray Photoelectron Spectroscopy)

Staphylococcus epidermidis

Two different bacterial strains: the one gram+ (a) and the other gram- (b) are caracterized by a different bacterial wall

THE BIOLOGICAL EXPERIMENT ÉSelection of bacteria from an unique colony;

ÉGrowth of bacteria in a physiological solution;

Éacteria are suspended in a bacteriostatic solution containing the polymeric surface;

Éafter 2 hours

One of the polymeric surfaces is prepared for the SEM analysis;

The other polymeric surfaces are used to determine the bacterial density using a fluorimetric marker.
Biomaterials: Bacteria on Polymers

Detection of the metabolic activity of the bacteria via a fluorometric / colorimetric growth indicator (Alamar Blue)

Indirect measurement of the bacterial density on the polymeric surface.

Biomaterials: Bacteria on Polymers

Biomaterials: Bacteria on Polymers

Glasses with increasing acidity

Lipid-based coating

["] non-fouling surface for controlling aspecific protein adhesion

Contrast phase microscope image of mouse fibroblasts (NIH-3T3) adhesion

"local drug delivery system for applying antimicrobial molecules to the surface of artificial implants

SEM image of *Staphylococcus aureus* on PMMA film

Prevention of bacterial adhesion and colonisation of polymeric surfaces by *deposition of lipid-based films loaded with an antibiotic (rifampicin)*

Bacterial infections on catheters

Most common pathogens isolated from hospital infections (%) ¹

Phatogens	1986-1989	1992-1999
Coagulase-negative staphylococci	27	37
Staphylococcus aureus	16	13
Enterococcus	8	13
Gram-negative rods	19	14
Escherichia coli	6	2
Enterobacter	5	5
Pseudomonas aeruginosa	4	4
Klebsiella pneumoniae	4	3
Candida spp.	8	8

Staphylococcus aureus on PMMA film 15kW X4,000 IPm HD23

Annual cost of caring for patients estimated around \$2.3 billion ¹

1. MMWR august 9, 2002 / Vol. 51 / No. RR-10

GRT legofichemiqahin'terajtions in bacterial kolpesion t c e v to polymen surfaces? tBiomutwidts b5 (2004g2029ö2037

In the United States approximately 80,000 bloodstream infections occuring each year are associated with CVC ¹

Liposomes as drug delivery systems

3. Adapted from:

Spherical particles made of lipid molecules (phospholipids, cholesterol)

These vesicles can be used as drug delivery system carrying active agents such as antibiotics

The release of the agent can be actively controlled for instance by pH, temperature variations, antibodies and fusion processes

2. From D.D.Lasic: from Physics to Applications, Elsevier, Amsterdam, The Nederlands, 1993

hp://www.science.mcmaster.ca/biochem/faculty/andrews/lab/projects/niosomes/picture1.jpg

Liposomes linkage at amine surface

A carbamate linkage was obtained between amino groups on polystyrene surface and the active group at the end of DSPE-PEG inserted in liposome membrane

After incubation on surface

(30 mns, room temperature, carbonate buffer 8pH)

Biomembrane preparation and surface attachment

Experiments are performed with liposomes made of the same lipid formulation but different in number of lamella and in size.

The selected polymeric model surface

We chose polystyrene as a model surface because it is commercially available in various versions and inexpensive

SAMPLE	BOTTOM AREA (cm ²)	SOURCE
PS ₀ - untreated	0.44	Biomat s.n.c., Italy
PS_F . hydrophilic surface	0.32	BD Biosciences, USA
PS_{C} . Costar 2388 NH ₂ enriched (2*10 ¹³ amine/cm ²)	0.32	Corning Incorporated, USA

Quantification of liposome coatings

The number of lipid molecules bonded to the surface was quantified using a fluorescent lipid inserted into the liposome membrane: 1% phosphatidylethanolamine- lissamine rhodamine B (PE-Rhod) relative to the total lipid weight/liposomes. The adherent film was removed by detergent and measured in solution by microplate fluorescence reader.

The comparison of liposomes with BTC-active and inactive PEG shows the contribution of covalently bonded molecules

Specific lipid adhesion 8 on polystyrene surface vs amine density

The specific adhesion 8 is the difference between the liposomes with PEG alone and liposomes with PEG-BTC.

The amine quantification on substrate was performed using fluorescamine, a marker that becomes fluorescent (fluorophore) after the bond with amino groups of polystyrene.

The value of amine quantification was normalized to the NH₂ enriched polystyrene .

Multilamellar liposome distribution and morphology on NH₂-riched polystyrene surfaces

4 95

J Fluorescence microscopy: quite uniform lipid distribution

J AFM: multilayer lipid structures (~ 8 bilayers) on the surface

J Liposome density quantification is consistent with AFM and fluorescence microscopy analyses

Multilamellar film stability on NH₂-rich polystyrene surfaces

The multilamellar stability on surface was performed in phosphate buffer at pH 7.4 at 37 °C for several days using the Rhod-PE fluorescent marker in the liposomes

The selected antibiotic and its encapsulation

Rifampicin is a specific inhibitor of bacterial deoxyribonucleic acid (DNA)-dependent ribonucleic acid (RNA) polymerase. It is a broad-spectrum antibiotic especially active against Gram+ bacteria

Rifampicin molecule

Rifampicin encapsulation depends

on lipid formulation

Different membrane composition of MLV and LUV (% molar)

a)	РС	Chol	DSPE-PEG	DSTAP
	55	30	5	10
b)	РС	Chol	DSPE-PEG	DSTAP
	<i>50</i>	30	5	15
c)	РС	Chol	DSPE-PEG	DOTAP
	<i>50</i>	30	5	15
d)	PC	Chol	DSPE-PEG	DOTAP
	50	26	4	20

PC: phosphatidylcholine

Chol: cholesterol

DSPE-PEG: disteroylphosphatidylethanolamine (polyethyleneglycol)

POSITIVELY CHARGED LIPIDS:

DSTAP: Distearoyl-3-Trimethylammonium-Propane (Chloride Salt) **DOTAP**: (Dioleoyloxy)propyl]-N,N,N-trimethylammonium chloride

Antimicrobial activity of rifampicin-loaded d-liposomes

Kirby-Bauer modified test using Staphylococcus epidermidis for the determination of the zone inhibition diameter after 24 hours at 37°C

A

Staphylococcus epidermidis was spread on agar plate (a culture solid nutrient)

The NH₂ polystyrene surface, covered with rifampicin loaded d-liposomes, has been put on to bacteria agar culture

С

Antimicrobial activity of polystyrene surface coated with rifampicin-encapsulated liposomes and free rifampicin

Two contributions since liposomes are not rinsed:

a. Rifampicin encapsulated within liposomes (LUV and MLV formulations)

b. Rifampicin freely bonded to polystyrene surface

Determining contribution from rifampicin inside liposomes

The detergent molecules do not remove free rifampicin from sample. The removed solution is transfered to filter paper and then stamped onto the bacteria agar plate.

Anti-microbial activity of the rifampicin-coated polymeric surfaces

Staphylococcus epidermidis growing cultures on unmodified substrate and modified with drug-loaded LUV and MLV liposomes

A reduced bacterial proliferation was detected on amine modified polystyrene (PSpl) using both LUVs and MLVs (10% and 2% respectively of the bacteria initially inoculated)

Time-dependent stability of the deposited lipid structures

The stability of deposited lipid films was determined at 37, C, obtaining a half-time of ~20 days.

- 1. Possible solution for bacterial infections: drug delivery with liposomes
- 2. Two kinds of liposomes bond to modified polystyrene with the same lipids density (2.2 x 10¹⁵ lipids molecules/cm²)
- 3. AFM and fluorescence microscopy analyses are consistent with lipids density quantification
- 4. Preliminary test on Staphylococcus epidermidis: promising antimicrobial activity results

Chitosan Electrodeposition

- Addressable signal guided deposition
- Temporally and spatially programmable (1-2 µm or better)

Human osteoblast-like cells (MG-63) adhesion on deposited chitosan films

A two step chemical reaction procedure was developed in order to attach a RGD adhesion factors to an activated surface:

Step 1: amide bond through the N-hydroxysuccinimide ester (NHS) Step 2: thiol chemistry (Vinylsulfone)

But at the a scale ?

control (PS)

a scale Chitosan electrodeposition

Compression Sealing

Testing flow condition Flow rate : ~ 50 al/min

Chitosan Platform for Biomolecule Assembly in Microfluidics

- " Transportation and reactions in microfluidic channel
- Biologically friendly environment for biomolecules interaction
- Optical observation, ex-situ analysis

Microfluidic Package

- Plexiglas packaging system
- Clear access for in-situ optical microscopy

RESULT: Chitosan-mediated DNA Assembly in Microfluidics

The idea: Chitosan film deposition and probe DNA coupling hybridization of target DNA

Fluorescence micrograph

- Signal-directed sequential assembly of DNAs onto addressable sites
- ["] Probe DNA on the electrode retained its hybridization capacity

Why?

Pyrolytic carbon (PyC) shows good anti-trombogenic properties, as it induces low levels of protein adsorption and platelet adhesion and activation.

For this reason it is currently used in artificial heart valves.

However, life-long treatment with anti coagulation drugs is compulsory.

Which goal ?

Find a surface coating that allows to avoid drug treatment

How?

1) Developing suitable surface functionalization

- non toxic

- long lasting (> 30 years !!!)

2) Identifying the role of surface features and properties such as:

- carbon atoms hybridisation and surface termination
- surface and sub-surface structure
- Õ

through

a thorough comparative investigation of the haemocompatibility of [10@^_+ Á & æ+ à [] Á & [] æc ã } * • Á Ç Þ Ô Õ Ê Á P U Ú Õ Ê

so that

it becomes possible to engineer the surface

CARBON MATERIALS

Pyrolytic carbon: Wide range of graphitic microstructures Variable content of impurities

HOPG

pyrolitic graphite with a high degree of preferred crystallographic orientation

Nanographite CVD grown nanostructured graphite

Nanocrystalline Diamond Diamond nanocrystallites covered by sp² material

Carbon Nanotubes Graphene sheets rolled up in tubular shape

COAGULATION CASCADE

PLATELETS ADHESION & ACTIVATION

TECHNIQUE INFO	Micro-BCA protein assay (on PPP) Plasma protein surface density
MOTIVATION	Surface coverage by protein is needed for platelet adhesion
TECHNIQUE	Immunofluorescence analysis (on PPP)
INFO	Factor XII and Fibrinogen surface adsorption and distribution
MOTIVATION	Surface coverage is needed for platelet adhesion

TECHNIQUE	SEM (on PRP incubated surfaces)
INFO	Platelets adhesion and activation
MOTIVATION	Platelet presence and activation are crucial to thrombus formation
TECHNIQUE	Calcein Fluorescence Analysis (on PRP)
INFO	Platelets vitality test
MOTIVATION	Platelets vitality must not be affected

SURFACE CHARACTERIZATIONS

TECHNIQUE AFM & SEM INFO Morphology

TECHNIQUE XPS INFO Hybridisation & contamination

CARBON MATERIALS SURFACES

PROTEIN SURFACE DENSITY

NCD has the lowest extent of protein adsorption

NG has the highest protein adsorption

CNTs difficult quantification due to incertitude in the exposed surfacePyC almost all adsorbed proteins are eluted after 2 h incubation with SDSHOPG an additional overnight incubation is needed

FACTOR XII SURFACE DISTRIBUTION

Only HOPG adsorbs Factor XII

Factor XII activates the intrinsic pathway of the coagulation cascade

FIBRINOGEN SURFACE DISTRIBUTION

PYC & NG : Homogeneous Surface Distribution

PLATELETS & PROTEINS

PyC shows low protein adhesion and weak platelets activation

HOPG show a large amount of adhering **proteins** and activated (FS) **platelets**

NCDs have low **protein** and **platelets** adhesion but high fraction of activated **platelets**

PLATELETS ADHESION & ACTIVATION

PLATELETS ADHESION & ACTIVATION

PLATELETS ADHESION

Randomly picked areas (4-6 regions/sample) Field size 100 x 100 µm²

NCDs shows low platelet adhesion (sometimes lower than PyC)
HOPG & NG show large amount of adhering platelets
CNTs surface value is approximate

PLATELETS ACTIVATION

PLATELETS ADHESION & ACTIVATION

PyC has a very low amount of activated platelets

HOPG & NG have a large amount of (mostly activated) platelets

NCDs have low amount of (mostly activated) platelets

PLATELETS VITALITY TEST

PLATELETS VITALITY TEST

PLATELETS & PROTEINS

PyC shows low **protein** adhesion and weak **platelets** activation

HOPG show a large amount of adhering **proteins** and activated (FS) **platelets**

NCDs have low protein and platelets adhesion but high fraction of activated platelets

SURFACE MORPHOLOGY

SUBSURFACE COMPOSITION

	С	0	F	Si	W	Мо
РуС	86.5	10.5	-	က	I	
NCD-P	90.2	7.9	I	I	I	2
NCD-UO	90.8	8.6	0.6	I	I	-
NCD-UH	82.2	10.6	I	I	7.2	-
NCD-UF	90.9	1.1	8	I	I	-

HOW TO IMPROVE NCD HAEMOCOMPATIBILITY ?

284

PyC

282

- Si addition ?
- Controlled surface texturing ?

Development of a *Lab-on-chip* for genomic analysis

Surface challenges

Silicon functionalization for DNA extraction-elution (electrostatic interaction)

Silanized PECVD silicon oxide: AFM and XPS analysis

Normalized N1s core line:

- Thermally grown Si oxide + APTES: higher density of NH₂ groups

- PECVD Si oxide + APTES: higher density of NH_{3}^{+} groups

Among the different tested silicon substrates, the silanized PECVD silicon oxide was selected for the DNA extraction and elution

Nitrogen content= 3.3%

DNA adhesion and elution on silanized **PECVD** silicon oxide

DNA adhesion: pH=7.5

Fluorescence microscopy images of DNA adherent on surfaces (100x100 am²). PicoGreen staining.

PECVD Si oxide + **APTES WET + DNA**

DNA elution: pH=10.5

Quantification of eluted DNA by fluorescence on different silicon substrates. PicoGreen staining.

2

0

Electrophoresis after PCR of eluted DNA

PEG passivation of microchannel device

"Surface modified to maintain the PCR enzyme (Taq) activity

"Surface modified to increase hydrophilic properties

Fluorescence microscopy image of functionalized channel

Fluorescence intensity profile

Research group and collaborators

C.Pederzolli L.Lunelli L.Pasquardini S.Forti M.Vinante L.Vanzetti R.Dellanna R.Canteri A.Lui G. Speranza L.Minati http://www.latemar.polito.it/

Alberto Tagliaferro

Livio Cognolato

Gary Rubloff, Reza Ghodssi, Greg Paine

Danilo Motta, Dentist, Trento, Italy